Waxsoosaarka aerosol

30+ sano oo soosaar ah
Baslada aasaasiga ah ee daciifka ah iyo soo-warbixinta eexda waxay horseedaan rajo weyn ee barashada mashiinka ee isleegyada kala duwan ee kaladuwan.

Baslada aasaasiga ah ee daciifka ah iyo soo-warbixinta eexda waxay horseedaan rajo weyn ee barashada mashiinka ee isleegyada kala duwan ee kaladuwan.

Waad ku mahadsantahay booqashada Dabeecadda. Nooca biraawsarka ee aad isticmaaleyso waxay xaddidan tahay taageerada CSS. Natiijooyinka ugu wanaagsan, waxaan kugula talineynaa inaad isticmaasho nooc cusub oo biraawsarkaaga (ama curyaaminta habka is-waafajinta ee Internet Explorer). Waqtigan xaadirka ah, si loo hubiyo in taageerada socota, waxaan ku tusnaynaa goobta iyada oo aan wax qabad lahayn ama javascript.
One of the most promising applications of machine learning in computational physics is the accelerated solution of partial differential equations (PDEs). The main goal of a machine learning-based partial differential equation solver is to produce solutions that are accurate enough faster than standard numerical methods to serve as a baseline comparison. Waxaan marka hore sameyneynaa dib u eegis nidaamsan oo ku saabsan suugaanta barashada mashiinka ee ku saabsan xalinta isleegyada kala duwan ee kaladuwan. Of all the papers reporting the use of ML to solve fluid partial differential equations and claiming superiority over standard numerical methods, we identified 79% (60/76) compared to weak baselines. Midda labaad, waxaan helnay caddeyn ku saabsan warbixin baahsan ee eexda, gaar ahaan gaar ahaan natiijada warbixinta iyo daabacaadda eexda. We conclude that machine learning research on solving partial differential equations is overly optimistic: weak input data can lead to overly positive results, and reporting bias can lead to underreporting of negative results. In large part, these problems appear to be caused by factors similar to past reproducibility crises: investigator discretion and positive outcome bias. Waxaan ugu yeernaa isbedelka dhaqanka ee hoose si loo yareeyo warbixinta ee xuska iyo dib-u-habaynta dhisme-kor-dhismeedka si loo yareeyo dhiirrigelinta qalloocan si sidaas loo sameeyo.

The code needed to reproduce the results in Table 2 can be found on GitHub: https://github.com/nickmcgreivy/WeakBaselinesMLPDE/ (ref. 125) and on Code Ocean: https://codeocean.com/capsule/9605539/ Geed / v1 (isku xirka 126) iyo https://codecean.com/capule/0799002/tree/v1 (isku xirka 127).
Randall, D., iyo WELSER, K. Dhibaatada nasashada ee sayniska casriga ah: Sababaha, cawaaqibka, cawaaqibka, iyo wadooyinka dib u habeynta (ururka qaran ee saynisyahannada, 2018).
Ritchie, S. Saynic: Sida khiyaano, eexda, aamusnaanta, iyo hype, iyo hype waxay wiiqayaan raadinta runta (canab, 2020).
Furfurnaanshaha sayniska. Qiimaynta taranka sayniska maskaxda. Sayniska 349, AAAC4716 (2015).
Prinz, F., Schlange, T., and Asadullah, K. Believe it or not: How much can we rely on published data on potential drug targets? NAT. Rev. "Helitaanka daroogada." 10, 712 (2011).
Benley, kg iyo ellis, lm kor u qaad heerarka kansarka kansarka ee ugu horreeya. Dabeecadda 483, 531-533 (2012).
A. Gelman iyo E. Laga maqla, Beerta Wadooyinka Foornada 348, 1-17 (Waaxda Tirakoobka, 2013).
Karagorgi, G., KACKA, KRAVitz, S., Nachman, B., iyo Shi, D.-yada barashada ee raadinta fiisigiska aasaasiga ah ee aasaasiga ah. NAT. Dhaqtarka falsafada ee fisikiska. 4, 399-412 (2022).
Dheerercherla s, Jaaday rehav SS, BAU CM iyo Ahsan Mj. Mashiinka barashada ee daahfurka daroogada: Dib u eegista. ATIF. Intel. Ed. 55, 1947-1999 (2022).
Mather, sida iyo Coote, ML waxbarasho qoto dheer oo ku saabsan kimistariga. J.Chchemistry. Ogeysii. Moodel. 59, 2545-2559 (2019).
Rajkomir A., ​​Dean J. iyo Koohan I. Mashiinka barashada dawada. Joornaalka cusub ee England ee dawada. 380, 1347-1358 (2019).
Grimmer j, wuu i garaacaa. iyo mashiinka mashiinka ee Stewart BM ee cilmiga bulshada: qaab agnostic. Rev. Ann Kubadda. sayniska. 24, 395-419 (2021).
Bood, J. et al. Samee saadaalin qaab-dhismeedka qaab dhismeedka borotiinka oo aad u sax ah adoo adeegsanaya allafrold. Dabeecadda 596, 583-589 (2021).
Gundersen, oo, Cokpley, K., Kirkpatrick, K., iyo Gil, Y. Ilaha Meelaha Isugeynta ee Waxbarshada Mashiinka: Dib-u-eegid. Qoraalka laga heli karo https://arxiv.org/abs/2204.07610 (2022).
MUQDISHO, D., SNOK, J., Wiltschko, A. iyo Rahimi, A. Guuniyaha? Xawaaraha, horumarka iyo adkaanta cadaymaha boqortooyinka (ICLR, 2018).
Armstrong, TG, Mofft, A. Webber, Webber, iyo Zobel, J. KHATARTA AQOONSIGA LIISKA LAMBARKA ACRIMEN.
Kapoor, S. Iyo Naranay, A. Bixinta baxsiga iyo dhibaatooyinka soo saaridda ee sayniska barashada ku saleysan mashiinka. Qaababka, 4, 100804 (2023).
Kapoor S. et al. Dib-u-habeyn: heerarka warbixinta sayniska ee ku saleysan barashada mashiinka. Qoraalka laga heli karo https://arxiv.org/abs/2308.07832 (2023).
Demada, O. Sinnaanta, C., iyo Reef, B. Isbarbar dhig aan macno lahayn ayaa u horseedi kara rajo wanaagsan ee barashada mashiinka ee mashiinka mashiinka. Plos hal 12, e0184604 (2017).
Roberts, M., et al. Garsooraha caanka ah iyo dhaqamada ugu wanaagsan ee loo adeegsado barashada mashiinka si loo ogaado loona saadaaliyo qaddarka '19-dajarada' raajooyinka xabadka 'iyo tomography. NAT. Max. Intel. 3, 199–217 (2021).
Guunyahanka L. Et al. Moodooyinka saadaalinta ee cudurka ogaanshaha iyo saadaalinshaha qasaasiga ah - 19: dib u eegis nidaamsan iyo qiimeyn muhiim ah. BMJ 369, M1328 (2020).
Whalen S., Schreleritiole J., Noble Ws iyo Paseard Ks ayaa ka gudbaya caqabadaha isticmaalka mashiinka barashada geesaha. NAT. Wadaad Ginette. 23, 169-181 (2022).
Atris n. et al. Falanqaadka ugu wanaagsan ee loogu talagalay barashada mashiinka ee kimistariga. NAT. Kiimiko. 13, 505-508 (2021).
Brunton SL iyo Kutz Jn Jn oo kor u qaadaya tilmaamaha loogu talagalay barashada mashiinka ee isleegyada kala duwan ee kaladuwan. NAT. xisaabi. sayniska. 4, 483-494 (2024).
VINESA, R. iyo Brunton, Hagaajinta Dheecaanka Dheecaanka ee Qiimeynta iyada oo loo marayo barashada mashiinka. NAT. xisaabi. sayniska. 2, 358-366 (2022).
Commeau, S. et al. Mashiinka sayniska ee barashada shabakadaha Jir ahaan ee Jir ahaaneed ee Nuxeysan: Meesha aan hadda joogno iyo waxa ku xiga. J. Sayniska. xisaabi. 92, 88 (2022).
Duraisamy, K., Yaccarino, G., iyo Xiao, H. Moodelka jahwareerka ee xilliga xogta. Daabacaadda dib loo eegay ee Ann. 51, 357-377 (2019).
Durran, DR Sawirro tiradeed oo lagu xallinayo isleegyada mawjadaha mawjadaha ku jira hydrongynamics-ka Geophysicalsvical-ka, Vol. 32 (guga, 2013).
Mishra, S. Qaab-dhismeedka Barashada Mashiinka ee Dardargelinta Xisaabinta Xogta loo Qiyaasa ee isleegyada kaladuwan. xisaabta. Injineer. https://doi.org/10.3934/mine.2018.1.1.1.118 (2018).
Kochikov D. et al. Barashada Mashiinka - Dardargelinta dhaqdhaqaaqa dareeraha ee ku-saleysan. geeddi-socod. Akadeemiyada Qaranka ee Sayniska. sayniska. US 118, e2101784118 (2021).
Kadapa, K. Barashada mashiinka ee sayniska kombiyuutarka iyo injineerinka - Hordhac kooban iyo qaar ka mid ah arrimaha muhiimka ah. Qoraalka waxaa laga helaa https://arxiv.org/abs/2112.12044 (2021).
Ross, A., Li, Z., Perezhogin, P., Fernandez-Granda, C., and Zanna, L. Comparative analysis of machine learning ocean subgrid parameterization in idealized models. J.WE. Moodel. Nidaamka Dhulka. 15. E2022ms003258 (2023).
Lippe, P., Wieling, B., Perdikaris, P., Turner, R., and Brandstetter, J. PDE refinement: achieving accurate long extrusions with a neural PDE solver. Shirka 37aad ee Nidaamka Waxqabadka Macluumaadka ee Neral (neerfayaasha 2023).
Frachas, pr et al. Xisaabinta algorithm-ka iyo xisaabinta kaydadka ee shabakadaha isdaba-joogga ee rugta ah ee saadaalinta dhaqdhaqaaqa khaldan ee murugsan. Shabakada neerfaha. 126, 191-21117 (2020).
Raissi, M., Perdikaris, P. and Karniadakis, GE Physics, computer science, neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Kombiyuutarka. Fiisigiska. 378, 686-707 (2019).
Grossmann, TG, komoroska, Uj, Lutz, J., iyo Schönlieb, K.-B. Shabakado ku saleysan fisikikada fisikikada ayaa ka dhisan hababka sharaha leh? IMA J. xisaabta. 89, 143-174 (2024).
de la Mata, FF, Gijon, A., Molina-Solana, M., and Gómez-Romero, J. Physics-based neural networks for data-driven modeling: advantages, limitations, and opportunities. Fiisigiska. A 610, 128415 (2023).
Zhuang, p.-y. & Barba, LA waa warbixin koronto oo ku saabsan shabakadaha neerfaha ee ku saleysan fisikigga ee qaab-dhismeedka dareeraha ah: gambalero iyo niyad jab. Qoraalka laga heli karo https://arxiv.org/abs/22014449 (2022).
Zhuang, p.-y. iyo Barba, Xaddidaadaha saadaalinta ee la saadaaliyay ee shabakadaha neerfaha ee maskaxda ee neerfaha ee ku saabsan qaabka vortex. Qoraalka laga heli karo https://arxiv.org/abs/2306.00230 (2023).
Wang, S., Yu, H., iyo Perdikaris, P. Goorma iyo sababta Pinns ay ku guuldareystaan ​​inay tababaraan: aragti NACENT Nucles Nucle. J. Kombiyuutarka. Fiisigiska. 449, 110768 (2022).
Krinshnapriyan, A. GAR.,, Zhe, S., Kirby, R., Kirby, iyo Mahoney, MW, MW, MW, MW, MW, MW, MW, MW Networks oo ah shabakadaha muuqaalka ee muuqaalka. Shirka 35aad ee Nidaamka Waxqabadka Macluumaadka ee Neral Vol. 34, 26548-26560 (neerfayaasha 2021).
Batir, S. iyo Sonnekak, I. Daraasad muhiim ah oo ku saabsan qaababka fashilka ee shabakadaha ku saleysan fisikikada. AIA SCITECC 2022 FOUM 2353 (Ark, 2022).
Karnakov P., Litvinov S. and Koumoutsakos P. Solving physical inverse problems by optimizing discrete losses: fast and accurate learning without neural networks. geeddi-socod. Akadeemiyada Qaranka ee Sayniska. sayniska. Nexus 3, Pgae005 (2024).
Gundersen oo mabaadi'da aasaasiga ah ee taranka. Phil.cross. R. Shuker. A 379, 20200210 (2021).
Araomaris e iyo parson A. Dib-u-eegista nidaamsan: dulmar guud. Haa. J. Kalkaalinta 114, 53-58 (2014).
Magiera, J., Ray, D. HESESESAVEN, JS, iyo Rohde, K. Ogeysii shabakadaha neerfaha ee dhibaatada Riemann. J. Kombiyuutarka. Fiisigiska. 409, 109345 (2020).
Bezgin da, Schmidt Sj iyo Adams NAMS NAMAMS NACE-Watka jir ahaan loo wargaliyay wareegga mugga jir ahaaneed ee naxdinta leh ee aan caadiga ahayn. J. Kombiyuutarka. Fiisigiska. 437, 110324 (2021).


Waqtiga Post: Sep-29-2024