Hatur nuhun pikeun ngadatangan alam.com. Versi browser anu dianggo ngagaduhan dukungan CSS terbatas. Pikeun hasil anu pangsaéna, kami nyarankeun yén anjeun ngagunakeun versi anu langkung saé atanapi mareuman ieu praku dina produk internét). Samentawis, pikeun ngajamin dukungan anggup, kami nunjukkeun situs-situs tanpa gaya atanapi javascript.
One of the most promising applications of machine learning in computational physics is the accelerated solution of partial differential equations (PDEs). The main goal of a machine learning-based partial differential equation solver is to produce solutions that are accurate enough faster than standard numerical methods to serve as a baseline comparison. Urang mimiti ngalaksanakeun ulasan sistematika tina literatur tujuanana mesin diajar pikeun ngarengsekeun persamaan beusaan. Of all the papers reporting the use of ML to solve fluid partial differential equations and claiming superiority over standard numerical methods, we identified 79% (60/76) compared to weak baselines. Kadua, urang mendakan bukti ngalaporkeun bias nyebar, khususna dina cara ngalaporkeun laparan sareng pubusitas bias. We conclude that machine learning research on solving partial differential equations is overly optimistic: weak input data can lead to overly positive results, and reporting bias can lead to underreporting of negative results. In large part, these problems appear to be caused by factors similar to past reproducibility crises: investigator discretion and positive outcome bias. We call for bottom-up cultural change to minimize biased reporting and top-down structural reform to reduce perverse incentives to do so.
Daptar panulis sareng artikel anu dihasilkeun ku Ténjo sistematis, ogé klorifikasi unggal tulisan dina conto acar, enton/Gq560/Gq50o.
Kode anu diperyogikeun pikeun ngahasilkeun hasil dina tabél 2 tiasa dipendakan dina GithB: HTTPS://github.com/nickMcglcry/05553. 125) 125) 125 )/9apsellagl Tangkal / v1 (numbu 126) sareng https://codeocean.com/kapulo/0799002/ree/v1 (numbu).
Ritake, S.Pation Fikik Liker: kumaha panipuan, bias, ka tiis, sareng syfe ngalirasan (Vintage, 2020).
Kolaborasi ilmiah. Nilai pangatur dina élmu psikologis. Élmu 349, IAAAC4716 (2015).
Prinz, F., Schyange, T. sareng Aswullah, K. Percaya éta atanapi henteu: Sabaraha tiasa ngandelkeun data narorongan ubar di udagan ubar di target ubar dina data narkoba dina target ubar di target ubar dina data narkoba anu dipedar? N. Rev. "penemuan ubar." 10, 712 (2011).
Begley, kg sareng Elis, LM ngalirakeun standar dina informasi kanker Proplinik. Héran 483, 531-533 (2012).
A. Gelman sareng E. Loken, taman pétsing jalur: masih sababaraha babandinganana nalika masalah sanajan tanpa "ekspedisi mancing" sareng hackselesikal paniliti "sareng hacksites anu preformess, vol. 348, 1-17 (Dinas statistik, 2013).
Singgagdi, G., Kasarecha, G., Kravitz, a. Nachman, B., sareng Shi pangajaran anyar dina milarian fiss dasar anyar. N. Dokter filsafat dina fisika. 4, 399-412 (2022).
Dara S, damuscha S, Jadhav sS, Kabu sareng Ahsan Mj. Pangajaran mesin di penemuan ubar: Review. Blif. Intel. Ed. 55 taun 1947-1999 (2022).
Myarat, sakumaha sareng cooot, ml langkung jelas diajar di kimia. J.Cemial. ngabéjaan. Model. 59, 2545-2559 (2019).
Rajkomar A., Dean J. sareng Kohan I. Mothing Mothing dina ubar. Jurnama énggal-énggal. 380, 1347-13-130 (2019).
Grimmer J, Roberts kuring. sareng Stewart BY Pelajar Mesin dina Élmu Sosial: pendekatan agnostik. Rev. A an an. Élmu. 24, 395-419 (2021).
Luncat, j. et al. Nyieun ramalan struktur protéin anu akurat nganggo alfafold. Alam 596, 583-589 (2021).
Gundersen, oE, Cobiy, K., Kirkpatrick, K., sareng Gil, Y. SGRROFOCOCONCisional di mesin Batesan: Jurus. Putra anu sayogi di HTtPs://arxiv.org/abs/2204.07610 (2022).
Siruk, D., Snook, J., Wiltschko, A., sareng Rahimi, A. Menang? Dina laju, kamajuan sareng kaku bukit ediris (iclr, 2018).
Arminggong, TG, Foffat, A., turber ,N, AND, sareng zocel, J. hasil awal ieu dina inpormasi ieu sareng Acara APM 2009).
Kaporor, S. sareng Narayanan, Are Bocok sareng krisis sareng pengroduksi Mesene Mesin. Pola, 4, 100804 (2023).
Kapor S. et al. Reformasi: standar ngalaporkeun ilmiah dumasar kana diajar mesin. Pitulung anu sayogi di https://arxiv.org/abs/2308.07832 (2023).
Sansawa, O., Colage, C., sareng Recht, B. Konseraan anu tiasa janten optimisme palsu dina pembero mesin médis. Plos 12, E0184604 (2017).
Roberts, M., et al. Pitokan umum sareng prakték pangsaéna pikeun ngagunakeun pembelajaran mesin pikeun ngadeteksi sareng ngaduga covid-19 ti ray X-ray sareng tomografi. N. Max. Intel. 3, 199-217 (2021).
Winantz L. et al. Modél prediksi pikeun diagnosis sareng prognosis covid-19: Tinjauan ringkes sareng pangadilan kritis. BMJ 369, M1328 (2020).
Paulen S., Schreibiber J., Aliran Bélok WS sareng panyusun ks anu nganggo pitfighs nganggo gimeling mesin. N. Pastor Intor. 23, 169-181 (2022).
Atris N. et al. Praktéri pangalusna pikeun mesin diajar dina kimia. N. Kimia. 13, 505-508 (2021).
Brunton sl sareng Kutz JN ngajangjikeun artos pikeun panyelajaran anu beusaan parsial. N. ngitung. Élmu. 4, 483-494 (2024).
Vinessa, R. sareng Brunton, nyeusian film fasilitas komputasi Transmations ngalangkungan diajar Mesin. N. ngitung. Élmu. 2, 358-366 (2022).
Comeau, S. et al. Peserit anu jéntré sareng jaringan neural sacara fisik: dimana kami ayeuna sareng naon salajengna. J. Élmu. ngitung. 92, 88 (2022).
Duraismami, K. Yaccarino, G., sareng Xiao, H. Konsingna modél data. Édisi édisi. 51, 357-377 (2019).
Durran, d durame numoris pikeun ngagarungkeun harti gelombang di hidrognistnynis, vol. 32 (springer, 2013).
Mishra, A. Kerakan pembelajaran Mesin pikeun ngagancurkeun kana Konsuméntasi Aktivitas anu disayogikeun tina persamaan bédana. Matematika. insinyur. https://doi.org/10.3934/mine.2018.1.118 (2018).
Kochikov D. et al. Pangajaran meser - akselerasi dinamika cairan komputer. Prosés. Akademi Nasional Élmu. Élmu. AS 118, E2101784118 (2021).
Kadapa, P. Pelajajaran Mesin pikeun élmu komputer sareng rékayasa komputer - pengecambahan ringkes sareng sababaraha masalah konci. Putret anu sayogi di HTTPS://arxiv.org/abs/2112.12054 (2021).
Ross, A., Li, Z., Perezhogin, P., Fernandez-Granda, C., and Zanna, L. Comparative analysis of machine learning ocean subgrid parameterization in idealized models. J.w. Model. sistem bumi. 15. E2022ms003258 (2023).
Lippe, P., Wieling, B., Perdikaris, P., Turner, R., and Brandstetter, J. PDE refinement: achieving accurate long extrusions with a neural PDE solver. Konsperénsi 37 dina sistem pangolalifikasi informasi anu neural (neurip 2023).
Freacas, p ika al. Algoritma Panyebaran sareng Imbervoir dina Jarungan Neuran anu murag pikeun ngarawat dinamika spatik sphatotik kompatibis. jaringan neural. 126 taun 191-217 (2020).
Raissi, M., Perdikaris, P. and Karniadakis, GE Physics, computer science, neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Komputer. fisika. 378, 686-707 (2019).
Brossmann, TG, komorka, UJ, lutz, J., sareng Schönlieb, K.-B. Bisa jaringan saraf dumasar fisik tina metode unsur? IMA J. Aplikasi. Matematika. 89, 143-174 (2024).
de la Mata, FF, Gijon, A., Molina-Solana, M., and Gómez-Romero, J. Physics-based neural networks for data-driven modeling: advantages, limitations, and opportunities. fisika. 610, 128415 (2023).
Zhuang, p.-- & Barba, L kamp laporan empiris dina jaringan nirapan senisi dina moder cair :car sareng kuciwa. Putret anu sayogi di HTTPS://arxiv.org/abs/2205.14249 (2022).
Zhuang, p.-- Sareng barba, la mikirjalan ngeunaan jaringan ninggangan sacara fisik dina formasi Vortex. Putra anu sayogi di HTTPS://arxiv.org/abs/2306.00230 (2023).
Weng., Yu, H., sareng PERDikaris, P. Nalika sareng «Kuna gagal ngalatih: Pintonék-gambar nuklentik Nanteng. J. Komputer. fisika. 449, 110768 (2022).
Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and Mahoney, MW Characteristics of possible failure modes in physical information neural networks. Konperénsi 35th dina sistem pangolalifikasi informs ngolah vol. 34,4548-26560 (neuras 2021).
Bagans, S. Sali, I. hiji sturolan gangguan dina jaringan alat dumasar kana fisika. Di Aiya Sharithovech 2022 Forum 2353 (ADK, 2022).
Snessov P., Litvinov S. sareng KouDoutsAKOS P. ngarengsekeun hasil révési seniur fisik ku ngaoptingan sarat: Aancangna tanpa jaringan neural. Prosés. Akademi Nasional Élmu. Élmu. Nexus 3, PGAZ005 (2024).
Prinsip-prinsip feedhersen Oe. Phil.cross. R. Shuker. A 379, 20200210 (2021).
Aromataris E sareng Pearson A. Up Panutupan: Tinjauan. Enya. J. Perawat 114, 53-58 (2014).
Mageria, J., Ramban, D., Heshaven, JS, sareng Rohde, K. Ekterned-épéktip pikeun masalah Riemang pikeun masalah Rieman. J. Komputer. fisika. 409, 109345 (2020).
Bebu Da, Schmidt SJ sareng Adam na na asupan dibéjaan sacara fisik sirkuit volume non-upah klasial. J. Komputer. fisika. 437, 110324 (2021).
Waktu Pasang: Sep-29-2024